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ABSTRACT

Understanding the role that a changing climate 
plays on the drinking water quality of Sydney’s 
water storage system is necessary for long term 
strategic supply planning. This study used Bayesian 
Hierarchical Models and water quality data from 
2000 to 2022 from within Warragamba Dam (~80% 
of Sydney’s drinking water storage), to quantify 
long term trends in water quality and the strength 
of climatic influences through rainfall and fire. The 
methods and outputs presented in this study are 
highly applicable to areas of future fire planning, 
climate scenario forecasting for water supply, 
catchment land management programs and water 
quality regulatory frameworks.

INTRODUCTION

period. In addition, the sum of the daily Forest Fire 
Danger Index for these regions has increased by 
around 10-20 points per year between 1997 to 2017 
(State of the Climate 2022). As a background to this 
drying trend, extreme rainfall events have become 
more common with rainfall intensity directly linked 
to temperature’s effects on the water holding 
capacity of the atmosphere, i.e., for every degree 
of warming, total rainfall during storm events is 
expected to increase by approximately 7% (State 
of the Climate 2022). 

The southeastern areas of Australia are the 
most highly populated in the country, and have 
exhibited long term weather patterns conducive to 
compound weather events, where multiple weather 
factors interact to create particularly challenging 
conditions for drinking water storage and supply. 
In 2019, Sydney’s water supply was sitting at 
record low levels after a multi-year lower than 
average rainfall period. This led to exceedingly dry 
conditions in the catchment and an extensive build-
up of dry plant materials, facilitating the 2019/2020 
Black Summer fire season. This burnt ~9050 km2 of 
protected forested surrounding Lake Burragorang 
(Warragamba Dam), which is the source for about 
80% of Sydney’s drinking water supply (Yang et 
al., 2020; Neris et al., 2021). Two weeks after the 
fires were contained an approximately one in forty-
year rainfall event occurred, preceding one of the 
wettest two-year periods on record for Sydney’s 
Drinking Water Catchment (Boer et al., 2020; Yang 
et al., 2020; Neris et al., 2021).

The burning of vegetation and subsequent 
deposition of ash and soil materials into fluvial 
systems poses risks to drinking water quality, such 

Anthropogenic emissions induced changes to global 
climatic trends has impacted nearly all aspects of 
our environment. Of ubiquitous importance across 
all regions are the expected changes to the volume 
and quality of drinking water available for supply 
due to currently observed, and further expected 
alterations to historical weather patterns. The 
challenges posed by climate change to drinking 
water supply strategies is acutely highlighted within 
Australia, where rainfall patterns are highly varied 
both spatially and temporally, and which maintains 
the lowest mean yearly rainfall of any continent. 
Between 1999 to 2018 southeast Australian rainfall 
during the April to October period declined by 
around 11% when compared to the 1900 to 1998 
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as increased loads of nitrogen, phosphorous, trace 
metals, and organics (Lane et al., 2008; Wilkinson 
et al., 2009; Honer et al., 2019; Blake et al., 2020). 
The magnitude of these risks is a product of a range 
of interactions, including, the level of fire intensity 
(Chafer et al., 2004), total burned area (Chafer 
et al., 2004, Yang et al., 2020), the frequency 
and intensity of rainfall events (Neris et al., 2021), 
seasonal thermal stratification of the lake (Pearl & 
Scott 2010), sediment intrusion transport dynamics 
(Pearl & Scott 2010), and the chemical fate of fire 
related constituents (Wilkinson et al., 2011). 

Understanding the role that a changing climate has 
played on the source water quality of Sydney’s water 
supply systems is necessary for long term strategic 
supply planning, and the maximisation of benefits 
from in-catchment land management activities. 
This paper analyses 22 years of water quality data 
from 2000 to 2022. The sampling point selected 
was 500 metres from the Warragamba Dam water 
offtake point, and data was analysed to establish 
long term trends in water quality and their links to 
the climatic influences of fire and rainfall. We use 
Bayesian hierarchical models to estimate the linear 
changes in water quality parameters over time, 
separating out background effects of rainfall and 
fire from general trends, establishing a quantitative 
summary of historical climatic influence on Sydney’s 
drinking water supply.

METHODS

General summary

All routine and special samples were taken from 
the WaterNSW Water Quality Data Base through 
PowerBI, for the period of 1-January-2020 to 
1-January-2022. Water quality parameters analysed 
included; Algal biovolume (mm3 L-1), cyanobacterial 
biovolume (mm3 L-1), algae (areal standard unit), 
cyanobacteria (areal standard unit), aluminium 
filtered (mg L-1), aluminium total (mg L-1), conductivity 
(mS cm-1), iron filtered (mg L-1), iron total (mg L-1), 
manganese filtered (mg L-1), manganese total (mg 
L-1), nitrogen total (mg L-1), organic carbon dissolved 
(mg L-1), organic carbon total (mg L-1), pH, true 
colour (TCU at 400nm) and turbidity (NTU). Where 
multiple names for the same parameter were found 
in the database (i.e., pH, pH Lab-Field, Lab/Field), 
all data columns were combined into one variable 
for analyses. Individual data frames were created 

for each analyte, all missing/blank values and all 
zero values were converted to NA, with all cells 
containing NAs subsequently being removed from 
all data frames.

Common in water quality concentration data is the 
presence of left censored values that are lower than 
the reportable limit (LRL) of sampling equipment, 
with this lower limit often changing through time 
as sampling technology changes. To impute LRL 
values across the data period, all samples displaying 
a less than symbol were run through an automatic 
number generating loop that randomly sampled 
from a uniform probability distribution between the 
known data limit of zero, and the LRL limit of the 
respective datapoint (Pleil, 2016). 

Each analyte was cleaned of outliers through a 
conservative Cook’s Distance cut-off of >0.85 
(McDonald 2002) so as to include as much natural 
variation as possible in analyses, while pruning 
the data of data entry errors orders of magnitude 
distant from the data modelled mean (“cooksd()” 
function, within the “car” package) (Cook 1986; 
McDonald 2002). 

Statistical analyses were performed in R-statistics, 
packages are listed after their function as described 
below.

Reservoir specific data treatment

Data from Warragamba Reservoir, 500m from dam 
wall (site code DWA2), was structured available 
as weekly, or fortnightly, single point source 
concentration samples within each of the routine 
sampling depth ranges; 0-6m, 6-9m, 9-12m, 12-18m, 
18-24m, 24-36m, 36-48m, 48-60m, and 60-84m. 
Where a composite sample existed in the data it 
was used instead. The point source samples were 
assumed as the concentration for the entire depth 
increment. 

To obtain a single representative parameter 
concentration value for each sampling date for use 
in whole-reservoir trend analyses, a mass balance 
equation was used to simulate a homogenously 
mixed water column. Note, algal analytes were 
not mixed, instead the top 0-12m were used. 
Mass-balance mixing methods produce a more 
robust estimate of a pseudo reservoir average, 
as it accounts for volume changes along with 
concentration changes (i.e., high manganese in 
deeper, lower volume, portions of the lake profile 
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would disproportionately affect an average term 
exclusive of volume). 

To estimate a mixed concentration, analyte masses 
were calculated for each depth increment and 
divided by the respective total reservoir volume 
to simulate water column mixing, as described 
in Equation 1. This method is subject to two main 
assumptions, (1) Depth-based concentrations at 
the dam wall are assumed as representative of the 
depth-based concentrations of the whole reservoir; 
and (2) The lake is fully homogenised/mixed. These 
assumptions are of low consequence to this study, 
as here we are not attempting to predict a mixed 
concentration, but instead obtain a pseudo average 
value normalised to volume for trending across 
years.

Equatation 1:

Where analyte α represents the estimated 
concentration of an analyte after full mixing, Total 
V represents the total volume stored within the 
reservoir at the time of sampling, di represents the 
number of sampling depth intervals in the reservoir 
(e.g. nine for Warragamba), Vi represents the volume 
of each depth increment between sampling points as 
obtained from bathymetry data, while αD1i and αD2i 
represents the concentration of analyte α within the 
upper and lower samples of each depth increment 
respectively. 

Burn data treatment

Both Hazard Reduction Burns (HRBs) and Wildfires 
contribute to water quality alteration through a range 
of processes including, thermal decomposition 
and release of chemicals stored in vegetation, 
increases in erosion due to the lowering of vegetive 
ground cover, and the deposition and subsequent 
resuspension of fire materials in waterways. 

Historical data for all HRBs and Wildfires across 
the forested Warragamba Special Areas (~2600 
km2) were obtained from the combined historical 
fires layer for NSW, extracted from NSW Rural 
Fire Service (Incident Coordination Online) ICON 
Database. Access to ICON burn data was facilitated 
by WaterNSW’ internal Spatial Modelling Team. 

Area burned in metres squared were summed for 
each year in the time series, irrelevant of burn type. 
Where no fire was recorded for the full year, a zero 
was used to represent the cumulative burnt area.

Previous studies in the Warragamba Catchment 
have demonstrated that fire-related materials 
remaining in the catchment can pose risks to water 
quality for 3-5 years post fire-event through ongoing 
fluvial transport and distribution (Wilkinson et al. 
2011). To conservatively account for inter-year fire 
contributions to water quality trends, a ‘Fire Proxy’ 
value was produced that assumed a continued 25% 
influence of burnt area on water quality from one 
year prior, and a 10% effect from two years prior, in 
accordance with the below Equation 2.

Equatation 2:

Where FP represents the Fire Proxy value expressed 
in m2, BA represents a cumulative Burnt Area 
value expressed in m2, and i represents the year of 
calculation.

Rainfall data treatment

To incorporate background weather patterns into 
modelling of water quality trends, the average 
daily rainfall (mm) across Warragamba catchment 
was used (col361 Daily Returns, Data Download). 
Rainfall data is an average of 210 collection sites 
across Lake Burragorang Catchment (Figure 1). The 
daily rainfall values were summed to a total yearly 
rainfall value (mm).

A prior understanding of water quality changes in 
large reservoirs is that impacts from large rainfalls 
can continue to affect parameter concentrations for 
a period of months post-event, e.g., a large rainfall 
event in November[Yeari] is likely to contribute 
to increased organic compounds present in 
February[Yeari + 1]. To account for ongoing rainfall 
contributions to water quality, a proxy rainfall value 
was estimated that incorporated a continued 25% 
influence of rainfall from one to six months prior, and 
a 10% influence of rainfall from six to twelve months 
prior, in accordance with the below Equation 23. 
The magnitude of residual influence from previous 
rain was assumed in this study, further work could 
improve the accuracy of these values.
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Equatation 3:

Figure 1: Distribution of rainfall gauges across the Lake Burragorang Catchment. Note, rain gauges periodically undergo 
maintenance and as such some may be included in historical data for short periods.

Where RP represents the Rainfall Proxy value 
expressed in millimetres, R represents a cumulative 
Rainfall value expressed in millimetres, i represents 
the year of calculation, and m represents the month 
as a value one to twelve.

Statistical analyses

Model structure

To analyse long-term trends in water quality, a 
Bayesian hierarchical generalised linear model was 
implemented using the ‘brm()’ function, within the 
“brms” package for R Statistical Software (Bürkner, 
2017). Unlike frequentist statistical approaches that 
assume parameters of a model to be fixed (i.e., a 
single slope parameter for relationships between 
the dependant and independent variables), in 

Bayesian statistics parameters are incorporated as 
a distribution of probable values and are therefore 
more intuitively interpreted within risk assessment 
and decision-making frameworks. The brm() 
function links to the Stan program to implement 
Hamiltonian Monte Carlo No U-Turn Sampling of 
the probable posterior model distributions (Duane 
et al. 1987; Neal 2011; Hoffman & Gelman 2014).

Models were run for each analyte, with the 
dependent Analyte variable assessed against 
the independent Year of sample variable, Rainfall 
Proxy variable, and Fire Proxy Variable (see section 
3.3 and 3.4 for calculation of these proxies). A 
smoothing term (also known as a spectral analysis) 
was placed on the month of sample collection 
to account for seasonal oscillations in analyte 
concentrations (12 knots for each month of the 
year, cyclic cubic regression splines), (Pedersen et 
al. 2019). Smoothed seasonal terms help prevent 
bias in the estimated yearly mean when samples 
are unevenly sampled throughout all seasons.
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Model selection

Model selection was performed using approximate 
leave-one-out cross validation with Pareto-
Smoothed importance sampling with an estimated 
difference in model predictive accuracy in the 
form of an expected log pointwise predictive 
density (ELPD)(‘loo_compare()’ function, within 
the ‘brms()’ package) (Vehtari et al. 2017). Model 
selection started with the most simple model of 
the expected relationship, being that of a linear 
regression, and then combining more complexities 
such as seasonal smoothing, autoregressive terms 
applied to each sample date, variance heterogeneity, 
and likelihood distribution alterations. Aluminium 
Filtered (mg/L) was used as the representative 
analyte for model selection as it is highly abundant 
across all sites and evenly sampled across the 
time series of 2000-2022. The model selection 
summary for Warragamba Reservoir can be found 
in Supplementary Table 1. 

The best model fit contained a Weibull likelihood 
distribution with a logarithm link to the linear 
model, the Weibull (log-link) is similar to a gamma 
(log-link) distribution and is highly flexible along 
the positive value scale. The Weibull distribution is 
often used in water quality studies as it assumes 
positive only data, and allows for increasing data 
variance with higher values (e.g., storm and inflow 
event concentrations compared to routine sampling 
concentrations) (Antonopoulos et al., 2001; Lee 
et al., 2008; Krueger 2017). In addition, a log-link 
model reduced the need for data transformation 
to achieve normal distribution of residuals, hence 
in this study no transformations were performed 
on raw data. Due to the log-link of the Weibull 
distribution, the slope parameter of the model 
outputs are expressed as a percentage change in 
the dependant variable with every one unit increase 
in the independent variable. 

Model validation

Model fits were validated by ensuring that trace 
plots of the four independent Markov-Chain 
Monte-Carlo (MCMC) chains mixed well (‘trace’), 
histograms of posterior parameter draws were 
normally distributed (‘hist’), boxplots of observed 
values were qualitatively homogenous with 
simulated datasets (‘boxplot’), leave-one-out 
probability integral transformation plots showed 
no distinct variation from the observed data (‘loo_
pit’), and that the empirical cumulative distribution 

function closely matched that of the observed data 
(ecdf_overlay) (Gelman et al., 2013; Gabry et al., 
2019)(Supplementary Figure 1a-e). No models were 
accepted that stated an error of R-hats greater 
than 1 (Bürkner 2017 & 2018). 

RESULTS

To establish the effects of rainfall and fire on long 
term trends, the slope of simple linear models 
(concentration vs time) was compared to more 
complex models with these climatic effects 
included (concentration vs time, rainfall and fire). 
The resulting change in slope expressed as a 
percentage indicates how much of the average over 
time change in water quality may be accounted 
for through changes in rainfall and burnt land 
mass. Rainfall and fire accounted for an average 
78.5% of the across time variations in water quality 
concentrations when incorporated into time series 
models. For example, Turbidity (NTU) change over 
time was estimated at 2.5% yr-1 (1.51% – 3.49%, 95% 
CI)(Figure 2a) using a simple linear model that 
represents average change over time, however the 
disaggregation of this time trend from the climatic 
effects of rainfall and fire resulted in an updated 
over time estimate of negative -3.03% yr-1 (-4.13 – 
-1.93%, 95% CI) (Figure 2b & Figure 3 on page 7).

Across all analytes tested, simple linear models 
showed probable mean concentration increases in 
79% of analytes (determined as >95% probability 
of a positive slope), however, only 47% of analytes 
retained estimates of probable increasing 
concentration changes once rainfall and fire were 
accounted for. The mean change (slope) over time 
across all analytes, not attributed to rainfall volume 
or fire burnt area, was estimated at 1.93% ± 0.29% 
unit-1 yr-1.

The median estimated influence of rainfall (total 
yearly millimetres) on water quality concentrations 
was an increase of 0.29% mm-1 yr-1, ranging from 
-0.02% – 1.17% (95% CI) (Figure 4a) (i.e., an increase 
of 1mm rainfall within a given year resulted in an 
estimated analyte concentration increase of 
0.29%). The interaction between rainfall and fire 
was substantively positive in 73% of analytes 
(>95% probability) (Figure 4b). Using the statistical 
parameters produced through these analyses we 
can estimate water quality changes using simulated 
environmental conditions, i.e., assuming rainfall in 
the year 2023 matches that of the 2000 
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Figure 2: Turbidity (NTU) trends over time exclusive and inclusive of rainfall and fire, (a) and (b) respectively. Circular 
data points are representative of the estimated mixed turbidity concentration of Lake Burragorang (Equation 1), each 

circle is the amalgamation of a full depth profile for a single day within that year. Sample abundance over years is subject 
to alterations in historical sampling routines and special event sampling, however Bayesian analyses techniques are 

highly robust to these differences through estimation of probable distributions. These results show that while turbidity 
concentrations have trended upwards over time (a) these increases are due to large rainfall events, with improving 

background turbidity inputs relative to rainfall volumes (b).

Figure 3. Turbidity’s relationship to rainfall and fire. The interaction between rainfall and fire positively influences 
estimated turbidity, showing how large events in 2020 and 2021 are likely to have contributed towards overestimates of 
time’s effect within simple linear trends Figure 2(a). This interaction value infers that rainfall events in burnt catchments 

exert greater influence on turbidity concentrations, seen here where a 1300mm rainfall year’s estimated turbidity is 
~10 NTU, while the same rainfall volume in a 500 km2 burnt area year results in an estimated doubling of the resulting 

turbidity.
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Figure 4: Frequency distribution of probable relationships between water quality parameters, Rainfall only Fig 3(a), and 
Rainfall-Fire interactions Fig 3(b) using a Bayesian Hierarchical Model. The distributions can be interpreted as a range of 

probable slope values given the data, with more probable slopes found at the median point of the distribution.

Figure 5: Conductivity trends in Lake Burragorang. Periods of freshwater inputs decrease conductivity by diluting 
the electrically conductive saline properties of the lake, however during the 2010-2017 period conductivity steadily 

increased (a) in parallel to major rainfall events (b), indicating potential anthropogenic inputs. Circular data points are 
representative of the estimated mixed conductivity concentration of Lake Burragorang (Equation 1), each circle is the 

amalgamation of a full depth profile for a single day within that year.



WATER QUALITY

09

– 2022 mean, a 2km2 burn (common yearly hazard 
reduction burn size) would increase turbidity (NTU) 
by 1.12% (0.73 - 1.48% CI) compared to no burns 
under the same conditions.

Rainfall had a positive effect on the concentrations 
of dissolved organic carbon (DOC) (0.06% mm  
yr-1, 0.02% to 0.08% CI), total organic carbon (TOC) 
(0.05% mm yr-1, 0.02% to 0.08% CI), and true colour 
at 400nm (TC) (0.21% mm yr-1, 0.17% to 0.25% CI). 
However, the interaction terms between rainfall and 
fire attributed to these analytes were found to be 
negative at -0.002% mm-1*km2 (99.45% probability), 
-0.001% mm-1*km2 (99.4% probability), and -0.001% 
mm-1*km2 (80.92% probability), respectively, 
indicating fire reduced the loads of these analytes 
delivered through rainfall.

Conductivity (mS cm-1) was found to be increasing 
at a median of 1.05% yr-1 at the dam wall of Lake 
Burragorang. A linear increase in conductivity was 
found between 2010-2017 parallel to major rainfall 
events indicating potential anthropogenic inputs 
(Figure 5). 

There were no statistically probable changes 
detected in algal and cyanobacterial biovolumes 
(mm3 L-1). To note is that algal data at the dam 
wall of Lake Burragorang (DWA2) was irregular, 
and year-long gaps exist which add to the lack of 
probable certainty in trends.

A complete list of all analyte parameters and 
model visualisations can be found in the attached 
Supplementary Material.

DISCUSSION

Long term drinking water supply planning is a field 
highly reliant on the identification of changing 
catchment conditions and their subsequent 
influence on water quality and quantity. Ecological 
and physical properties of a catchment, such 
as extreme rainfall and fire events play a critical 
role in shaping water quality trends in reservoirs, 
however, quantification of these dynamics are 
currently lacking. Using a temperate reservoir 
case-study within south-eastern Australia, and 
Sydney’s largest water storage system, we 
quantitatively demonstrate that rainfall and fire 
events substantially influence estimated water 
quality change over time. As further described 

below, this study showed that an estimated 78.5% 
of water quality concentration changes analysed 
between 2000-2022 can be attributed to large 
rainfall and fire events towards the end of this 
period, i.e., concentrations within inflows have on 
average reduced over time, large inflow volumes 
have counteracted these concentration reductions. 
In addition, we show that the interactive effects of 
rainfall and fire vary in importance across key water 
quality analytes and discuss residual conductivity 
trends in the context of anthropogenic inputs.

The 2019/2020 black summer fires and subsequent 
flooding events across south-eastern Australia 
correlated with large changes in Lake Burragorang 
water quality, which supplies ~80% of Sydney’s 
drinking water (Yang et al., 2020; Neris et al., 2021). 
The standard methods for investigating long term 
water quality change in Sydney’s catchment is 
through a biannual review using a combination of 
mean or median change, analyte-specific threshold 
breaching event abundance, and Mann-Kendall-
Sneyers (MKS) time series analyses (Mann 1945; 
Sneyers 1991). However, these methods do not 
account for the increasingly common effects of 
large rainfall and fire events, potentially leading to 
an overestimate of background change attributed to 
non-climatic catchment conditions. With millions in 
funding allocated annually across Sydney’s drinking 
water supply catchments towards optimal land 
management practices for water supply, correctly 
quantifying and categorising influencing factors 
into the effects of a changing climate (i.e., rainfall 
and fire combined) and the effects of a changing 
catchment (e.g., vegetation change, agricultural 
inputs etc) ensures mitigation program efficacy, 
and more accurate long term supply planning. Here 
we find that in comparison to simple linear models, 
and across all analytes tested, mean rate of water 
quality change over time reduced by 78.5% when 
rainfall and fire were incorporated into the model. 
This finding more accurately represents changes in 
catchment conditions, outside of climatic events, 
and allows for further informed investigation of 
residual change in the context of land management 
programs. In addition, this result highlights the 
necessity for long-term water supply planning to 
take into account multiple climate scenarios, and 
the quantifiable impacts of major climatic events, on 
water quality and treatment capacity for effective 
management.

The statistical method used in this study allows 
for enhanced estimation of future water quality 
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conditions based on current conditions, assumed 
yearly rainfall, and assumed yearly fire. For 
instance, a simple linear model using turbidity 
(NTU) concentrations over time estimated a yearly 
increasing trend of 2.56% over the study period, 
while the hierarchical model applied here which 
disaggregates climatic effects to estimate slope 
parameters for time, rainfall and fire, resulted in a 
reducing yearly trend of -3.05%. This disaggregated 
hierarchical model established that historical fluxes 
in turbidity were attributed to concurrent inflow 
and fire events. Therefore, using the statistical 
parameters produced through these analyses 
we can estimate water quality changes using 
simulated environmental conditions, i.e., assuming 
rainfall in the year 2023 matches that of the 2000 
– 2022 mean, a 2km2 burn (common yearly hazard 
reduction burn size across the Lake Burragorang 
Catchment) would increase turbidity (NTU) by 1.12% 
(0.73 - 1.48% CI) when compared to no burns under 
the same conditions. This statistical forecasting 
provides multiple lines of evidence for other 
process/conceptual models commonly applied to 
catchment and in-lake processes across Australia, 
and aids in both the decisions of land programs and 
preparation for treatment options.

Just under half (47%) of the analytes tested in this 
study continued to show background concentration 
changes outside of the direct climatic effects 
of rainfall and fire. Here we discuss two main 
potential causes of these increases, Regime Shifts, 
and Changes of Inflow Concentrations. However, 
note that within highly stochastic catchment 
scale ecosystems, time-based trends are often 
the product of multiple compounding biological, 
geophysical, and chemical interactions. 

1.	 Regime shifts in the environment describe 
when a substantial ecosystem shift occurs due 
to new or ongoing variations in environmental 
conditions, this can occur when either the 
strength of the conditional change is large 
enough, or the time between condition change 
events becomes small enough, that the system 
no longer rebounds and can be characterised 
at a significantly different baseline (Anderson 
et al., 2009; Hilt et al., 2011; Hilt et al., 2017). 
For example, photodegradation of chemicals 
and benthic settling of particulates are two 
major components that contribute towards 
ecological elasticity in freshwater lakes, 
however, these processes have a natural 
maximum rate depending on the system and 

thus can be outbalanced by multiple large 
inputs of lower quality. Understanding the 
potential regime shifts that may have occurred 
within the timeseries of this study through 
event categorisation could help to disentangle 
the reasons behind background concentration 
increases, and possible management actions that 
facilitate increased ecological elasticity. And,  

2.	 Changing inflow concentrations. While the 
analysis method used in this study accounts 
for changing rainfall volumes, it does not 
account for changing inflow concentrations. 
The planned next stage of this study is a flow 
normalised trend analyses for inflow sites across 
Lake Burragorang, that aims to determine if the 
mass, or load, of key analytes have changed over 
time. A detected across time change in input 
load under similar rainfall conditions, could be 
indicatory of changing catchment conditions 
(e.g., land-use in unprotected areas or natural 
vegetation change), helping to inform targeted 
management response.

Across 73% of analytes studied, rainfall and fire were 
shown to share a probable increasing multiplicative 
relationship with each other (>95% probability). 
This interaction term represents the multiplicative 
relationship between rainfall and fire, where burns 
accompanied by rainfall may have a far greater 
effect on water quality due to run-off of thermally 
degraded ash materials during rainfall events, 
when compared to equally wet years with no fire. 
Interestingly, while rainfall alone had an increasing 
effect on the concentrations of dissolved organic 
carbon, total organic carbon, and true colour (at 
400nm), the interaction term between rainfall 
and fire attributed to these analytes was negative. 
These findings suggests that counter to previous 
expectations, fire may reduce the available organic 
material in run-off through thermal volatilisation 
(release to the atmosphere as a gas) of previously 
chemically leachable litter materials (Gray & Dighton 
2006; Neris et al., 2021). Large inflow years across 
the analyses period qualitatively contributed the 
same or more organics when no fire was present, 
which in combination with a lack of rainfall fire 
interaction, indicates that within Lake Burragorang 
reservoir, fire did not increase organic matter and 
colour concentrations. 

Conductivity (mS cm-1) was found to be increasing 
at 1.05% yr-1 at the dam wall of Lake Burragorang. 
Freshwater lake conductivity naturally decrease 



WATER QUALITY

11

during inflows, and increase during dry periods 
where evaporation leads to greater salinity and 
therefore electrical conduction (Williams 2001; 
Alcocer & Filonov 2007; Marotta et al., 2010). 
Freshwater lakes naturally become more saline 
over large periods of time, through both rainfall 
from saltwater origins, and run-off that has filtered 
through mineral rich soils and rocks (Webster 
et al., 2000). However, outside of natural salt 
biogeochemical cycling, recent literature has shown 
that anthropogenic activities such as human-
accelerated weathering, sewage, fertiliser, and mine 
drainage have contributed to increased salinity in 
drinking water reservoirs, termed global Freshwater 
Salinisation Syndrome (FSS) (Cañedo-Argüelles et 
al., 2013; Herbert et al., 2015; Kaushal et al., 2018; 
Reid et al., 2019). An increasing concentration 
trend in conductivity during the higher than 
average rainfall period of 2010-2015 (Figure 4) may 
indicate previous anthropogenic saline inputs in 
Lake Burragorang. Further assessment is required 
to determine if the former is the root cause of this 
trend or if a combination of natural lake processes 
and anthropogenic pressures are at play. Planned 
trend analysis on major inflow streams will help 
identify the contributing factors to these trends in 
Lake Burragorang.

CONCLUSION

In conclusion, this study provides quantitative data 
on extreme climatic event’s adverse effects on raw 
water quality of south-eastern Australia, finding 
that commonly used water quality trend analysis 
methods are inaccurate in the inference of changing 
drinking water catchment conditions. We find that 
over the 2000-2022 period the combined effects 
of rainfall and fire accounted for an estimated 
78.5% of water quality concentration changes in 
Sydney’s largest drinking water supply reservoir. 
In addition, we demonstrate the use of Bayesian 
hierarchical modelling tools for the identification 
of background catchment associated water quality 
trends, highlighting that commonly used simple 
linear trend analysis techniques vastly under-
estimate the positive effects of land management 
activities across catchments by ignoring changing 
climatic conditions. We also find that counter to 
original hypotheses, the burning of vegetation 
during fire years did not have a substantial effect 
on concentrations of dissolved organic carbon, 
total organic carbon, or true colour (400nm), 

(although fire followed by rainfall did impact the 
other parameters examined) with rainfall instead 
being the singular driver of these parameters. The 
analysis technique and outputs of this study are 
highly relevant to the design and assessment of 
both fire mitigation planning, and climate scenario 
forecasting for water supply, while the outputs are 
directly applicable to southeast Australian drinking 
water catchment land management programs. 
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SUPPLEMENTARY INFORMATION

Supplementary Table 1: Model selection outputs for Warragamba Reservoir and Aluminium Filtered (mg/L) using leave-
one-out (LOO) cross validation. ‘bf()’ represents the bayesian formula for hierarchical model analyses as set out in 

‘brms()’ package, ‘s()’ is a smoothing function applied to the seasonal variable.

Expected log pointwise density (ELPD) difference between each layer of 
models is displayed, with the standard error of the difference (SE). The closer 
to zero the ELPD is, the better the fit of the model, with overlapping SEs 

indicating minimal difference.
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SUPPLEMENTARY INFORMATION

Supplementary Table 2: Posterior predictive checks, a) Trace Plot, b) Histogram of parameter distributions, c) Boxplot of 
observed and simulated data, d) LOO-PIT plot of model fit, and e) ecdf-overlay of observed and predicted values.


