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ABSTRACT 
 
This study proposes a new approach to obtain smooth 

demand patterns while calibrating water distribution system 

(WDS) hydraulic models using an automatic calibration 

method. The water usage patterns in a WDS vary 

throughout the day and night which is represented by 

demand multipliers. Through the calibration process, many 

parameters including demand multipliers are adjusted to 

minimise the difference between simulated and the observed 

data at the point of interest. This is achieved by minimising 

the objective function value. The demand multipliers in a 24-

hour cycle sometimes become unsmooth and often a major 

difference between two adjacent demand multipliers is 

observed due to under or over calibration which is 

unrealistic. To obtain a smooth demand pattern, 

programming functions were incorporated with the 

calibration process. Two different approaches were 

investigated where in the first approach, the demand 

multipliers as sampled by the optimisation algorithm within 

their specified range were smoothed by a smoothing 

function and used the smoothed pattern in assessing the 

objective function value. In the second approach, the 

demand pattern was represented by a Fourier polynomials 

function and optimise the function parameters. The 

proposed method tries to keep a balance between minimum 

objective function and the smoothness of demand patterns. 

This approach was applied in calibrating the hydraulic model 

of a large WDS in South Australia and found to have the 

potential to ensure minimum objective function as well as 

smoothness of demand patterns. This method is suitable 

when there is insufficient field data available to create 

demand patterns rather estimating them through model 

calibration. 
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INTRODUCTION 
 
Hydraulic models are frequently used in many areas 

including but not limited to analyse hydraulic states of a 

network system and to study development scenarios for 

planning and management, and hence act as a decision 

support tool to improve the system’s performance (Kara et 

al., 2016). A water distribution system (WDS) serving a 

variety of customers and the water usage or demand 

patterns associated with different types of customers are 

highly variable in space and time. The demand patterns in a 

WDS are classified as: (i) residential (ii) commercial and (iii) 

industrial (Letting et al., 2017). In a hydraulic model, the 

demand patterns are represented by introducing demand 

multipliers that relate to the change of water usage in a 24-

hour cycle with respect to a baseline value. Hence, the 

hydraulic model is required to calibrate to ensure that it 

closely reproduce the observed patterns in the real system 

(Shen and McBean, 2010, Moradi et al., 2018). 

 

The calibration of a hydraulic model is done by conducting 

multiple model runs to optimise several parameters including 

demand multipliers, pipe roughness, settings of various 
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hydraulic components, etc. The number of parameters to 

optimise are quite large resulting in an increased search 

space, making it a considerably complex task. Among these 

parameters of a hydraulic model, some are highly uncertain 

in space and time. Kang and Lansey (2011) stated that pipe 

roughness and demand multipliers are the most uncertain 

parameters associated with a WDS hydraulic model 

because they are not practically measurable in the field. 

Hence, these parameters are fixed through the model 

calibration process. Over the years, many algorithms have 

been developed to minimise some of these issues in the 

optimisation process. Some offer the option to incorporate 

external functions into the hydraulic model to automate the 

calibration process. 

 

WDS hydraulic model calibration can be considered as a 

non-linear and ill-posed optimisation problem (Do et al., 

2016, Zanfei et al., 2020). Because several components of a 

WDS hydraulic model are controlled using simple and logical 

rules leading to break up the linear sensitivity of many 

parameters. Some parameters also show a composite 

sensitivity meaning changing their values may affect the 

sensitivity of other parameters. During the calibration 

process, parameter values are searched within the defined 

space and can take any values to satisfy the criteria of 

minimum objective function. Often the optimisation is 

heading to the path led by the sensitive parameters. This 

can lead to a considerable difference between two adjacent 

demand multipliers or irregular peaks if the search space is 

not carefully defined. Since the demand patterns in a WDS 

are highly uncertain, it isn't easy to define a narrow search 

space. Representing a more exhaustive search space can 

result in increased chances of irregular patterns and peaks. 

 

The demand multipliers in a real WDS does not sharply rise 

or fall between two adjacent timestamps rather they change 

in a regular fashion. Hence using different methods, 

including pre-smoothing them before populating the model 

input file or expressing them as a function of time and 

optimising the function parameters, allows representing the 

pattern between two adjacent timestamps more practically. 

Therefore, the objectives of the study are: (i) to assess and 

incorporate the smoothness option into the calibration 

process and (ii) to calibrate the hydraulic model while 

maintaining the maximum smoothness of the demand 

patterns. This is a novel approach that allows to model and 

obtain realistic demand patterns hence, contributes to 

improve the hydraulic modelling application. 

 
 

MATERIALS AND METHODS 
Study area 
 
The case study selected was Tailem Bend-Keith (TBK) 

drinking water distribution system, which is in regional South 

Australia, approximately 80 km South East of Adelaide. It 

extends from Tailem Bend to Keith township with the major 

branches including Karoonda, Lower Lakes, Meningie, etc. 

The TBK system withdraws water from River Murray and 

treated at the Tailem Bend water treatment plant (WTP) 

using conventional treatment process (Hossain et al., 2020, 

Moradi et al., 2018, Hossain et al., 2021). The treated water 

is then pumped into the distribution network consisting of 

about 143 km long pipeline and several hundred kilometers 

of branch mains. Supervisory Control And Data Acquisition 

(SCADA) is used to monitor hydraulic and water quality data 

at several strategic locations in the distribution system. The 

schematic of the TBK distribution system is presented in 

Figure 1.
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Figure 1. Schematic of the TBK distribution system in South Australia. 

 
 

Modelling demand patterns 
 
The demand patterns were modeled using a non-linear 

function/ multi-parameter curve. The position, spread and 

peaks of the curve to be adjusted through the calibration 

process. This will ensure a smooth pattern as optimising the 

demand multipliers directly often cause unsmooth or 

unlinked pattern between the subsequent demand 

multipliers or irregular peaks. Several functions were 

assessed and the Fourier nth order polynomial was found to 

satisfactorily represent the demand patterns in a WDS. An 

nth order Fourier polynomial has 2n+1 parameters which 

were included in the calibration process.  

 

The Fourier polynomials represent a curve in terms of a 

linear combination of some basis functions. They can be 

expressed by either trigonometric function or exponential 

function. In the trigonometric form, the function is expressed 

as a combination of sine and cosine series. This way the 

original curve is decomposed by assigning a coefficient to 

each sine and cosine term that best represent the strong 

underlying repetition pattern and at the same time it corrects 

many other weaker repetitions by partially cancelling each 

other. The trigonometric expression of the Fourier 

polynomials is given in Equation 1

 

𝑦 = 𝑎0 + ∑ 𝑎𝑖 𝑐𝑜𝑠(𝑖𝑤𝑥) + 𝑏𝑖𝑠𝑖𝑛(𝑖𝑤𝑥)
𝑛
𝑖=1    (1) 
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Where a0 represent a constant (intercept) term associated 

with the cosine term at i = 0, n is the total number of 

harmonics present in the curve and w is the frequency. The 

coefficients ai, bi are weights or scaling factors for each sine 

and cosine term in the equation. They indicate the strength 

of the underlying repetition patterns and the associated 

cycle-relative shifts from each other. 

 

Hydraulic and calibration setup 
 

EPANET, a public domain hydraulic modelling tool 

developed by the US Environmental Protection Agency 

(USEPA) was used to develop the hydraulic model 

(Rossman et al., 2020). It simulates the hydraulic behaviour 

in nodes and links by solving the mass conservation 

equation for each node and the energy equation for each 

link in the network (Muranho et al., 2015, Rossman et al., 

2020). The data required to setup the hydraulic model and 

the calibration process includes GIS and SCADA data which 

were obtained from the South Australian Water Corporation 

(SA Water). Missing data were estimated using linear 

interpolation and the extreme values in the data were 

replaced with the closest sensible values. The total inflows 

and outflows during the study period were balanced by 

adjusting the base demands at all nodes using the SCADA 

flowmeter data at the available locations. This required re-

adjusting the sampled demand multipliers by the 

optimisation algorithm such that their average value always 

becomes one. R programming language (RCoreTeam, 

2019) was used to pre-process the data before passing to 

the model input file and PEST (Parameter Estimation), a 

non-linear optimisation tool was used to calibrate the model 

(Doherty, 2005). This is a model independent parameter 

optimisation tool, widely used in many surface and 

groundwater applications (Doherty and Skahill, 2006, 

Hossain et al., 2019, Hossain et al., 2021). 

 

The Covariance Matrix Adaptation Evolution Strategy 

(CMAES), which is a global search algorithm was employed 

in parameter optimisation. The CMAES algorithm was first 

proposed by Nikolaus Hansen which has been proven to be 

suitable in optimising non-linear problem or searching the 

global minima in a rugged landscape (e.g. noisy, multi-

modality, many local optima, etc.) (Hansen and Kern, 2004, 

Hansen and Ostermeier, 2001). CMAES involves an iterative 

procedure to minimise the objective function. At each 

iteration, possible candidate solutions are generated 

according to a multivariate normal distribution and ranked 

them by order. For the next iteration, the parameters of the 

multivariate normal distribution are updated based on the 

rank and the search space is adaptively increased or 

decreased. 

 

As shown in Figure 2, different approaches were tried to 

obtain a smooth demand pattern. In the first approach 

(Figure 2a), the optimisation algorithm sampled the demand 

multipliers within the defined range. Prior to populating the 

model input file, the sampled demand multipliers comprising 

the demand patterns were smoothened by implementing the 

R programming codes and the model input file was 

populated using the smooth demand patterns. In the second 

approach (Figure 2b), the demand multipliers were 

represented by an equation and the equation parameters 

were optimised. Prior to each model run, the optimisation 

algorithm sampled the equation parameter values which 

were then passed to the programming codes to regenerate 

the smooth demand multipliers which then used to populate 

the model input file. Both procedures continue until the 

convergence criteria were met.
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Figure 2. Flowchart of the calibration setup (a) smoothing the sampled demand multipliers prior to model run using a smoothing 

function by employing R programming codes and (b) representing the demand pattern using an equation and optimising the 

equation parameters. 

 

 

The objective function used was to minimise the sum of 

square residuals between the observed and the simulated 

data which includes tank head and flow data at the points of 

interest. The convergence criteria to terminate the 

optimisation process were: (i) insignificant reduction of 

parameter values or objective function over successive 

iterations; (ii) convergence of parameters to their optimal 

values and (iii) exceedance of the maximum number of 

iterations (Doherty, 2005). Throughout the calibration 

process, the objective function was assessed, and the 

process terminates once there is no significant improvement 

of objective function between n successive iterations or any 

other convergence criteria is met. The calibration process 

requires running the model hundreds to thousands of times, 

consuming a considerable amount of time to complete the 

process. This was handled by employing parallel processing 

in a high-performance computing (HPC) environment. 

 

 

RESULTS AND 
DISCUSSION 
 

The curve fitting approach found that a Fourier 6th order 

polynomial can satisfactorily represent the residential 

demand multipliers while a 5th order is adequate to represent 

the commercial demand. The R2 value obtained in both fits 

were over 0.99 indicating a satisfactory fit. The 6th and the 

5th order Fourier polynomials have thirteen and eleven 

parameters respectively to include in the calibration process. 

Though increasing the polynomial order improves the fitting, 

to be parsimonious, further increase of the polynomial order 

was not considered and the maximum fit with the minimum 

number of parameters was sought. Representing a curve 

with less parameters also reduce the solution space during 

optimisation by reducing the population size. Consequently, 

the number of model runs and the convergence time also 
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decreased. Similarly, an increased number of parameters 

increase the convergence time by increasing the solution 

space. On the other hand, any further modification or 

transformation of parameters between the processes by the 

optimisation algorithm and the model run in an iteration loop 

may increase the non-linearity of the objective function with 

respect to the parameters representing the model and the 

convergence time increase. 

 
The hydraulic model of the TBK system was developed and 

the parameters to be calibrated were defined. Figure 3 

shows the initial values of the demand multipliers used in the 

calibration process, their upper and lower limits and the 

optimised demand multipliers obtained through the 

calibration process. The initial values and the upper and 

lower limits of the demand multipliers were obtained by 

analysing the SCADA data during the study period of 

February to March, 2021. The upper and lower limits of the 

demand multipliers were comparatively narrow between 10 

pm to 6 am as the variation of water usage during this period 

was minimum. The global optimisation algorithm does not 

require any starting point rather the model is run using 

multiple start points and the objective function is assessed. 

However, providing an initial starting point can significantly 

decrease the number of model runs. It is evident from Figure 

3a that calibration using the hourly/sub-hourly residential 

demand multipliers cause irregular patterns and many 

peaks. This is because optimisation minimises the difference 

between observed and simulated data and in doing so, the 

demand pattern may characterise poorly. On the other hand, 

while applying the smoothing function many irregular peaks 

disappeared and the resulting demand pattern is more 

similar to that observed in a typical WDS. The optimised 

commercial demand pattern is presented in Figure 3b which 

also indicates a smooth pattern when using the smooth 

function. 

 

 
Figure 3. Initial values of demand multipliers, their upper and lower boundaries and the optimised demand multipliers for (a) 

residential demand pattern and (b) commercial demand pattern. 
 
 

The plots of the observed vs simulated tank heads for two 

different points located at Binnies and Meningie and a 

flowmeter located at pump station 2 (PS2) in the TBK 

distribution system are shown in Figure 4. The trend lines 

indicate that for both cases, (i) unsmooth demand patterns 

and (ii) smooth demand patterns, the model reproduces the 

observed data with a good level of accuracy. In the first 

case, the correlation between the observed and the model 

simulated heads at Binnies and Meningie tanks and flow at 

PS2 were 0.95, 0.88 and 0.80, respectively. The mean of the 

observed and the simulated tank heads at Binnies were 

136.77 m and 136.76 m, and at Meningie were 42.53 m and 

42.54 m, while the same for the observed and the simulated 

flows at PS2 were 57.19 L S-1 and 55.92 L S-1, respectively. 

For the second case, the correlation between the observed 
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and the simulated tank heads and pump flow were 0.96, 

0.89 and 0.79, respectively.  

 

In contrast, for smooth patterns, the mean of the simulated 

tank heads at Binnies and Meningie were 136.82 m and 

42.54 m while the same for simulated flow was 54.75 L S-1 

respectively. The standard deviation of observed flow at PS2 

and simulated flow using unsmooth and smooth patterns 

were 55.8 L S-1, 54.2 L S-1 and 52.1 L S-1 respectively. The 

minimum of observed and simulated flows was 0 L S-1, while 

the maximum of observed and simulated flows for both 

cases were 190.5 L S-1, 168.08 L S-1 and 168.36 L S-1 

respectively. The percentage error of mean flow at PS2 for 

unsmooth and smooth patterns were 2.2% and 4.2% 

respectively. These statistics indicate that by incorporating 

the smoothing function in the calibration process, model can 

effectively describe the observed data. 

 

 

 
Figure 4. Plot of the observed vs the simulated data using unsmooth and smooth demand patterns resulting from calibration (a) 
head at Binnies tank using unsmooth demand patterns; (b) flow at PS2 using unsmooth demand patterns; (c) head at Meningie 
tank using unsmooth demand patterns; (d) head at Binnies tank using smooth demand patterns; (e) flow at PS2 using smooth 

demand patterns and (f) head at Meningie tank using smooth demand patterns. 
 
 

When calibrating a hydraulic model, often the smoothed 

demand patterns are created from the actual calibration 

patterns after the calibration has been completed. The 

smoothing is done using a smoothing function, and the 

resulting smoothed patterns can further increase the 

calibration objective function value. Therefore, smoothing 
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them prior to passing to the model and assessing the 

objective function value during calibration can ensure 

smoothness and minimum objective function. Usually, in 

developing hydraulic models, field data are used to create 

demand patterns and scaling factors. In most cases water 

balance calculations are discrete (complete) and accurate 

enough to use real data. The exception is when there are 

gaps in the water balance calculation (i.e. a missing flow 

meter), or the calculated profile is highly irregular. The 

proposed method has the benefit to establish a smooth 

profile while maintaining the least error function. It may help 

to estimate the demand when a zone contains a missing 

flow meter or improve model usability by having a smooth 

profile. Current models sometimes have trouble converging 

a calculation when there is a significant step change in 

hydraulics; a smooth profile helps avoid this problem. 

 

The calibration of a WDS hydraulic model is a considerably 

complicated task due to a large number of parameters 

involved in the modelling and calibration process, some of 

which are highly uncertain in space and time. Therefore, it is 

difficult to obtain a unique set of parameter values that 

correspond to the global minima, rather many different set of 

optimised values may lead to similar objective function. The 

best parameter set should be identified using the WDS 

modelling experience, and hence can be subjective. The 

method presented here can ensure minimum objective 

function by maintaining smooth demand patterns resulting 

from calibration. This approach used single residential and 

commerical patterns for each zone which represent average 

pattern from the relevant users in that zone. If individual 

customer water usage data are available, it is recommended 

to use that data for better water balance and calibration of 

the model. The proposed method is more suitable when 

individual customer meter data are not available. Instead, 

the SCADA flowmeter data are available to measure total 

flow for that zone. This approach was applied together with 

pipe roughness in the calibration process. Further 

refinements can be made to extend the method to other 

parts of the calibration process, such as amending pump or 

valve controls or optimising other hydraulic components. 

 

CONCLUSION 
 

A new approach is proposed in this paper that helps to 

improve the optimisation of demand patterns in a WDS 

hydraulic model. The demand multipliers in a 24-hour cycle 

were represented by a non-linear function which return a 

smooth demand pattern, or the function parameters were 

optimised instead of optimising the demand multipliers 

directly. The purpose was to obtain a smooth demand 

pattern and at the same time achieve the minimum objective 

function. The appropriate equation that fits with the typical 

demand patterns in a WDS was identified using curve fitting 

tools. The Fourier polynomials was found to be adequately 

represent both residential and commercial demand patterns. 

This approach was applied to calibrate the hydraulic model 

of a large drinking water distribution system in regional 

South Australia and found to have the potential to achieve 

an adequate level of calibration while maintaining a smooth 

demand pattern. 
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